Friday, November 1, 2024
No menu items!
HomeNaturePhonon modes and electron–phonon coupling at the FeSe/SrTiO3 interface

Phonon modes and electron–phonon coupling at the FeSe/SrTiO3 interface

  • Wang, Q. Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 29, 037402 (2012).

  • Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature 515, 245–248 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, R. et al. Tuning the band structure and superconductivity in single-layer FeSe by interface engineering. Nat. Commun. 5, 5044 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Dichotomy of the electronic structure and superconductivity between single-layer and double-layer FeSe/SrTiO3 films. Nat. Commun. 5, 5047 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Ubiquitous strong electron-phonon coupling at the interface of FeSe/SrTiO3. Nat. Commun. 8, 14468 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, R. et al. Atomic-scale observation of localized phonons at FeSe/SrTiO3 interface. Nat. Commun. 15, 3418 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, D. et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nat. Commun. 3, 931 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Interface charge doping effects on superconductivity of single-unit-cell FeSe films on SrTiO3 substrates. Phys. Rev. B 89, 060506(R) (2014).

  • Zhang, H. et al. Origin of charge transfer and enhanced electron-phonon coupling in single unit-cell FeSe films on SrTiO3. Nat. Commun. 8, 214 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyata, Y., Nakayama, K., Sugawara, K., Sato, T. & Takahashi, T. High-temperature superconductivity in potassium-coated multilayer FeSe thin films. Nat. Mater. 14, 775–779 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei, B. et al. Evolution of high-temperature superconductivity from a low-Tc phase tuned by carrier concentration in FeSe thin flakes. Phys. Rev. Lett. 116, 077002 (2016).

  • Wen, C. H. P. et al. Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy. Nat. Commun. 7, 10840 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. H. et al. Direct observation of high-temperature superconductivity in one-unit-cell FeSe films. Chin. Phys. Lett. 31, 017401 (2014).

  • Ge, J. F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 14, 285–289 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, S. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605–610 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, S. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 12, 634–640 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/SrTiO3 films. Nat. Commun. 12, 2840 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, Q. et al. Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunnelling microscopy. Nat. Phys. 11, 946–952 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Song, Q. et al. Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO3 interface. Nat. Commun. 10, 758 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. High-order replica bands in monolayer FeSe/SrTiO3 revealed by polarization-dependent photoemission spectroscopy. Nat. Commun. 12, 4573 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faeth, B. D. et al. Interfacial electron-phonon coupling constants extracted from intrinsic replica bands in monolayer FeSe/SrTiO3. Phys. Rev. Lett. 127, 016803 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuchs, R. & Kliewer, K. L. Optical modes of vibration in an ionic crystal slab. Phys. Rev. 140, A2076 (1965).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S. et al. Role of SrTiO3 phonon penetrating into thin FeSe films in the enhancement of superconductivity. Phys. Rev. B 94, (2016).

  • Zhang, S. et al. Enhanced superconducting state in FeSe/SrTiO3 by a dynamic interfacial polaron mechanism. Phys. Rev. Lett. 122, 066802 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, F. et al. Atomically resolved FeSe/SrTiO3(001) interface structure by scanning transmission electron microscopy. 2D Mater. 3, 024002 (2016).

  • Sims, H. et al. Intrinsic interfacial van der Waals monolayers and their effect on the high-temperature superconductor FeSe/SrTiO3. Phys. Rev. B 100, 144103 (2019).

  • Peng, R. et al. Picoscale structural insight into superconductivity of monolayer FeSe/SrTiO3. Sci. Adv. 6, eaay4517 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkatraman, K., Levin, B. D. A., March, K., Rez, P. & Crozier, P. A. Vibrational spectroscopy at atomic resolution with electron impact scattering. Nat. Phys. 15, 1237–1241 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 367, 1124–1127 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, M. et al. Single-atom vibrational spectroscopy with chemical-bonding sensitivity. Nat. Mater. 22, 612–618 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, X. et al. Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, X. et al. Real-space visualization of frequency-dependent anisotropy of atomic vibrations. Preprint at https://arxiv.org/abs/2312.01694 (2023).

  • Erdman, N. et al. The structure and chemistry of the TiO2-rich surface of SrTiO3 (001). Nature 419, 55–58 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kubo, T. & Nozoye, H. Surface structure of SrTiO3(100). Surf. Sci. 542, 177–191 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andersen, T. K., Fong, D. D. & Marks, L. D. Pauling’s rules for oxide surfaces. Surf. Sci. Rep. 73, 213–232 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zou, K. et al. Role of double TiO2 layers at the interface of FeSe/SrTiO3 superconductors. Phys. Rev. B 93, 180506 (2016).

  • Pedersen, A. K. et al. Interfacial superconductivity in FeSe ultrathin films on SrTiO3 probed by in situ independently driven four-point-probe measurements. Phys. Rev. Lett. 124, 227002 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 016103 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. Inelastic electron scattering at large angles: the phonon polariton contribution. Preprint at https://arxiv.org/abs/2401.04719 (2024).

  • Nicholls, R. J. et al. Theory of momentum-resolved phonon spectroscopy in the electron microscope. Phys. Rev. B 99, 094105 (2019).

  • Zeiger, P. M. & Rusz, J. Efficient and versatile model for vibrational STEM-EELS. Phys. Rev. Lett. 124, 025501 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rademaker, L., Wang, Y., Berlijn, T. & Johnston, S. Enhanced superconductivity due to forward scattering in FeSe thin films on SrTiO3 substrates. New J. Phys. 18, 022001 (2016).

  • Rademaker, L., Alvarez-Suchini, G., Nakatsukasa, K., Wang, Y. & Johnston, S. Enhanced superconductivity in FeSe/SrTiO3 from the combination of forward scattering phonons and spin fluctuations. Phys. Rev. B 103, 144504 (2021).

  • Zhao, W. et al. Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO3 interface. Sci. Adv. 4, eaao2682 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, D. H. What makes the Tc of FeSe/SrTiO3 so high? Chin. Phys. B 24, 117405 (2015).

  • Kang, B. L. et al. Preformed Cooper pairs in layered FeSe-based superconductors. Phys. Rev. Lett. 125, 97003 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Faeth, B. D. et al. Incoherent Cooper pairing and pseudogap behavior in single-layer FeSe/SrTiO3. Phys. Rev. X 11, 021054 (2021).

  • Ide, K., Tanaka, T., Pedersen, A., Ichinokura, S. & Hirahara, T. Temperature dependence of the superconducting gap of single-layer FeSe/SrTiO3: direct comparison between transport and spectroscopic measurements. Phys. Rev. Mater. 6, 124801 (2022).

  • Guan, J. et al. Superconducting transition of FeSe/SrTiO3 induced by adsorption of semiconducting organic molecules. Phys. Rev. B 95, 205405 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Qi, R. et al. Four-dimensional vibrational spectroscopy for nanoscale mapping of phonon dispersion in BN nanotubes. Nat. Commun. 12, 1179 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoglund, E. R. et al. Emergent interface vibrational structure of oxide superlattices. Nature 601, 556–561 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batson, P. E. & Lagos, M. J. Interpretation of meV resolution phonon EELS data. Microsc. Microanal. 24, 412–413 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Blochl, P. E. Projector augmented-+rave method. Phys. Rev. B 50, 24 (1994).

    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baroni, S., De Gironcoli, S., Corso, A. D. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gonze, X. First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. Phys. Rev. B 55, 10337–10354 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, R. H., Chakhmouradian, A. R. & Woodward, P. M. Crystal chemistry of perovskite-type compounds in the tausonite-loparite series, (Sr1−2xNaxLax)TiO3. Phys. Chem. Miner. 27, 583–589 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zeiger, P. M. & Rusz, J. Frequency-resolved frozen phonon multislice method and its application to vibrational electron energy loss spectroscopy using parallel illumination. Phys. Rev. B 104, 104301 (2021).

  • Chen, X., Kim, D. S. & LeBeau, J. M. A comparison of molecular dynamics potentials used to account for thermal diffuse scattering in multislice simulations. Ultramicroscopy 244, 113644 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments